Publication

Understanding Short-term Changes in Online Activity Sessions

World Wide Web (WWW)


Abstract

Online activity is characterized by regularities such as diurnal and weekly patterns, reflecting human circadian rhythms and work and leisure schedules. Using data from the online social networking site Facebook, we uncover temporal patterns at a much smaller time scale: within individual sessions. Longer sessions have different characteristics than shorter ones, and this distinction is already visible in the first minute of a person’s session activity. This allows us to predict the ultimate length of his or her session and how much content the person will see. The length of the session and other factors are in turn predictive of when the individual will return. Within a session, the amount of time a person spends on different kinds of content depends on both the person’s demographic attributes, such as age and the number of Facebook friends, and the length of the time elapsed since the start of the session. We also find that liking and commenting is very non-uniformly distributed between sessions. Predictions of session duration and activity can potentially be leveraged to more efficiently cache content, especially to mobile devices in places with poor communications infrastructure, in order to improve user online experience.

Related Publications

All Publications

SPCE - December 21, 2020

Contact Burn Injuries Part II: The influence of object shape, size, contact resistance, and applied heat flux

May Yen, Francesco Colella, Harri Kytomaa, Boyd Allin, Alex Ockfen

SPCE - December 21, 2020

Contact Burn Injuries Part I: The influence of object thermal mass

May Yen, Francesco Colella, Harri Kytomaa, Boyd Allin, Alex Ockfen

CODE - November 20, 2020

Privacy-Preserving Randomized Controlled Trials: A Protocol for Industry Scale Deployment (Extended Abstract)

Mahnush Movahedi, Benjamin M. Case, Andrew Knox, Li Li, Yiming Paul Li, Sanjay Saravanan, Shubho Sengupta, Erik Taubeneck

ISMAR - November 9, 2020

Investigating Remote Tactile Feedback for Mid-Air Text-Entry in Virtual Reality

Aakar Gupta, Majed Samad, Kenrick Kin, Per Ola Kristensson, Hrvoje Benko

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy