Publication

Understanding Short-term Changes in Online Activity Sessions

World Wide Web (WWW)


Abstract

Online activity is characterized by regularities such as diurnal and weekly patterns, reflecting human circadian rhythms and work and leisure schedules. Using data from the online social networking site Facebook, we uncover temporal patterns at a much smaller time scale: within individual sessions. Longer sessions have different characteristics than shorter ones, and this distinction is already visible in the first minute of a person’s session activity. This allows us to predict the ultimate length of his or her session and how much content the person will see. The length of the session and other factors are in turn predictive of when the individual will return. Within a session, the amount of time a person spends on different kinds of content depends on both the person’s demographic attributes, such as age and the number of Facebook friends, and the length of the time elapsed since the start of the session. We also find that liking and commenting is very non-uniformly distributed between sessions. Predictions of session duration and activity can potentially be leveraged to more efficiently cache content, especially to mobile devices in places with poor communications infrastructure, in order to improve user online experience.

Related Publications

All Publications

Finding the Best k in Core Decomposition: A Time and Space Optimal Solution

Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang, Yinglong Xia, Chenyi Zhang

ICDE - April 20, 2020

Differences between oculomotor and perceptual artifacts for temporally limited head mounted displays

Alexander Goettker, Kevin J. MacKenzie, T. Scott Murdison

SID Display Week - June 2, 2020

Fast Dimensional Analysis for Root Cause Investigation in a Large-Scale Service Environment

Fred Lin, Keyur Muzumdar, Nikolay Laptev, Mihai-Valentin Curelea, Seunghak Lee, Sriram Sankar

ACM SIGMETRICS - June 8, 2020

Predicting Remediations for Hardware Failures in Large-Scale Datacenters

Fred Lin, Antonio Davoli, Imran Akbar, Sukumar Kalmanje, Leandro Silva, John Stamford, Yanai Golany, Jim Piazza, Sriram Sankar

IEEE/IFIP DSN - June 29, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy