Research Area
Year Published

597 Results

December 11, 2018

The Costs of Overambitious Seeding of Social Products

International Conference on Complex Networks and their Applications

Product-adoption scenarios are often theoretically modeled as “influence-maximization” (IM) problems, where people influence one another to adopt and the goal is to find a limited set of people to “seed” so as to maximize long-term adoption. In many IM models, if there is no budgetary limit on seeding, the optimal approach involves seeding everybody immediately. Here, we argue that this approach can lead to suboptimal outcomes for “social products” that allow people to communicate with one another.

By: Shankar Iyer, Lada Adamic
December 3, 2018

Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes

Conference on Neural Information Processing Systems (NIPS)

While designing the state space of an MDP, it is common to include states that are transient or not reachable by any policy (e.g., in mountain car, the product space of speed and position contains configurations that are not physically reachable). This results in weakly-communicating or multi-chain MDPs. In this paper, we introduce TUCRL, the first algorithm able to perform efficient exploration-exploitation in any finite Markov Decision Process (MDP) without requiring any form of prior knowledge.

By: Ronan Fruit, Matteo Pirotta, Alessandro Lazaric
December 2, 2018

One-Shot Unsupervised Cross Domain Translation

Conference on Neural Information Processing Systems (NIPS)

Given a single image x from domain A and a set of images from domain B, our task is to generate the analogous of x in B. We argue that this task could be a key AI capability that underlines the ability of cognitive agents to act in the world and present empirical evidence that the existing unsupervised domain translation methods fail on this task.

By: Sagie Benaim, Lior Wolf
November 27, 2018

AnoGen: Deep Anomaly Generator

Outlier Detection De-constructed (ODD) Workshop

Motivated by the continued success of Variational Auto-Encoders (VAE) and Generative Adversarial Networks (GANs) to produce realistic-looking data we provide a platform to generate a realistic time-series with anomalies called AnoGen.

By: Nikolay Laptev
November 27, 2018

Deep Incremental Learning for Efficient High-Fidelity Face Tracking

ACM SIGGRAPH ASIA 2018

In this paper, we present an incremental learning framework for efficient and accurate facial performance tracking. Our approach is to alternate the modeling step, which takes tracked meshes and texture maps to train our deep learning-based statistical model, and the tracking step, which takes predictions of geometry and texture our model infers from measured images and optimize the predicted geometry by minimizing image, geometry and facial landmark errors.

By: Chenglei Wu, Takaaki Shiratori, Yaser Sheikh
November 3, 2018

The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People with Visual Impairments

Conference on Computer-Supported Cooperative Work and Social Computing (CSCW)

Like sighted people, visually impaired people want to share photographs on social networking services, but find it difficult to identify and select photos from their albums. We aimed to address this problem by incorporating state-of-the-art computer-generated descriptions into Facebook’s photo-sharing feature.

By: Yuhang Zhao, Shaomei Wu, Lindsay Reynolds, Shiri Azenkot
November 3, 2018

How Social Ties Influence Hurricane Evacuation Behavior

Conference on Computer-Supported Cooperative Work and Social Computing (CSCW)

This work is the first of its kind, examining these phenomena across three major disasters in the United States—Hurricane Harvey, Hurricane Irma, and Hurricane Maria—using aggregated, de-identified data from over 1.5 million Facebook users.

By: Danaë Metaxa-Kakavouli, Paige Maas, Daniel P. Aldrich
November 3, 2018

RacerD: Compositional Static Race Detection

Conference on Object-Oriented Programming, Systems, Languages & Applications (OOPSLA)

Automatic static detection of data races is one of the most basic problems in reasoning about concurrency. We present RacerD—a static program analysis for detecting data races in Java programs which is fast, can scale to large code, and has proven effective in an industrial software engineering scenario.

By: Sam Blackshear, Nikos Gorogiannis, Peter O'Hearn, Ilya Sergey
November 2, 2018

Do explanations make VQA models more predictable to a human?

Empirical Methods in Natural Language Processing (EMNLP)

A rich line of research attempts to make deep neural networks more transparent by generating human-interpretable ‘explanations’ of their decision process, especially for interactive tasks like Visual Question Answering (VQA). In this work, we analyze if existing explanations indeed make a VQA model – its responses as well as failures – more predictable to a human.

By: Arjun Chandrasekaran, Viraj Prabhu, Deshraj Yadav, Prithvijit Chattopadhyay, Devi Parikh
November 2, 2018

Jump to better conclusions: SCAN both left and right

Empirical Methods in Natural Language Processing (EMNLP)

Lake and Baroni (2018) recently introduced the SCAN data set, which consists of simple commands paired with action sequences and is intended to test the strong generalization abilities of recurrent sequence-to-sequence models. Their initial experiments suggested that such models may fail because they lack the ability to extract systematic rules. Here, we take a closer look at SCAN and show that it does not always capture the kind of generalization that it was designed for.

By: Joost Bastings, Marco Baroni, Jason Weston, Kyunghyun Cho, Douwe Kiela