Publication

Social Influence in Social Advertising: Evidence from Field Experiments

ACM Conference on Electronic Commerce (EC)


Abstract

Social advertising uses information about consumers’ peers, including peer affiliations with a brand, product, organization, etc., to target ads and contextualize their display. This approach can increase ad efficacy for two main reasons: peers’ affiliations reflect unobserved consumer characteristics, which are correlated along the social network; and the inclusion of social cues (i.e., peers’ association with a brand) alongside ads affect responses via social influence processes. For these reasons, responses may be increased when multiple social signals are presented with ads, and when ads are affiliated with peers who are strong, rather than weak, ties.

We conduct two very large field experiments that identify the effect of social cues on consumer responses to ads, measured in terms of ad clicks and the formation of connections with the advertised entity. In the first experiment, we randomize the number of social cues present in word-of-mouth advertising, and measure how responses increase as a function of the number of cues. The second experiment examines the effect of augmenting traditional ad units with a minimal social cue (i.e., displaying a peer’s affiliation below an ad in light grey text). On average, this cue causes significant increases in ad performance. Using a measurement of tie strength based on the total amount of communication between subjects and their peers, we show that these influence effects are greatest for strong ties. Our work has implications for ad optimization, user interface design, and central questions in social science research.

Related Publications

All Publications

ArXiv/SSRN - December 28, 2020

Social Distancing During a Pandemic: The Role of Friends

Michael Bailey, Drew Johnston, Martin Koenen, Theresa Kuchler, Dominic Russel, Johannes Stroebel

AISTATS - April 30, 2021

Accelerating Metropolis-Hastings with Lightweight Inference Compilation

Feynman Liang, Nimar Arora, Nazanin Tehrani, Yucen Li, Michael Tingley, Erik Meijer

GRID - February 19, 2021

Measuring Long-Term Displacement Using Facebook Data

Eugenia Giraudy, Paige Maas, Shankar Iyer, Zack Almquist, JW Schneider, Alex Dow

NeurIPS - December 10, 2020

Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy