Social Hash Partitioner: A Scalable Distributed Hypergraph Partitioner

Very Large Data Bases Conference (VLDB)


We design and implement a distributed algorithm for balanced k-way hypergraph partitioning that minimizes fanout, a fundamental hypergraph quantity also known as the communication volume and (k − 1)-cut metric, by optimizing a novel objective called probabilistic fanout. This choice allows a simple local search heuristic to achieve comparable solution quality to the best existing hypergraph partitioners. Our algorithm is arbitrarily scalable due to a careful design that controls computational complexity, space complexity, and communication. In practice, we commonly process hypergraphs with billions of vertices and hyperedges in a few hours. We explain how the algorithm’s scalability, both in terms of hypergraph size and bucket count, is limited only by the number of machines available. We perform an extensive comparison to existing distributed hypergraph partitioners and find that our approach is able to optimize hypergraphs roughly 100 times bigger on the same set of machines. We call the resulting tool Social Hash Partitioner, and accompanying this paper, we open-source the most scalable version based on recursive bisection.

Related Publications

All Publications

MLSys - March 1, 2020

Predictive Precompute with Recurrent Neural Networks

Hanson Wang, Zehui Wang, Yuanyuan Ma

CODE - November 20, 2020

Privacy-Preserving Randomized Controlled Trials: A Protocol for Industry Scale Deployment (Extended Abstract)

Mahnush Movahedi, Benjamin M. Case, Andrew Knox, Li Li, Yiming Paul Li, Sanjay Saravanan, Shubho Sengupta, Erik Taubeneck

ACM SIGCOMM - October 26, 2020

Zero Downtime Release: Disruption-free Load Balancing of a Multi-Billion User Website

Usama Naseer, Luca Niccolini, Udip Pant, Alan Frindell, Ranjeeth Dasineni, Theophilus A. Benson

FL-ICML - September 1, 2020

ResiliNet: Failure-Resilient Inference in Distributed Neural Networks

Ashkan Yousefpour, Brian Q. Nguyen, Siddartha Devic, Guanhua Wang, Aboudy Kreidieh, Hans Lobel, Alexandre M. Bayen, Jason P. Jue

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy