Publication

Social Comparison and Facebook: Feedback, Positivity, and Opportunities for Comparison

Conference on Human Factors in Computing Systems (CHI)


Abstract

People compare themselves to one another both offline and online. The specific online activities that worsen social comparison are partly understood, though much existing research relies on people recalling their own online activities post hoc and is situated in only a few countries. To better understand social comparison worldwide and the range of associated behaviors on social media, a survey of 38,000 people from 18 countries was paired with logged activity on Facebook for the prior month. People who reported more frequent social comparison spent more time on Facebook, had more friends, and saw proportionally more social content on the site. They also saw greater amounts of feedback on friends’ posts and proportionally more positivity. There was no evidence that social comparison happened more with acquaintances than close friends. One in five respondents recalled recently seeing a post that made them feel worse about themselves but reported conflicting views: half wished they hadn’t seen the post, while a third felt very happy for the poster. Design opportunities are discussed, including hiding feedback counts, filters for topics and people, and supporting meaningful interactions, so that when comparisons do occur, people are less affected by them.

Related Publications

All Publications

Finding the Best k in Core Decomposition: A Time and Space Optimal Solution

Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang, Yinglong Xia, Chenyi Zhang

ICDE - April 20, 2020

Differences between oculomotor and perceptual artifacts for temporally limited head mounted displays

Alexander Goettker, Kevin J. MacKenzie, T. Scott Murdison

SID Display Week - June 2, 2020

Fast Dimensional Analysis for Root Cause Investigation in a Large-Scale Service Environment

Fred Lin, Keyur Muzumdar, Nikolay Laptev, Mihai-Valentin Curelea, Seunghak Lee, Sriram Sankar

ACM SIGMETRICS - June 8, 2020

Predicting Remediations for Hardware Failures in Large-Scale Datacenters

Fred Lin, Antonio Davoli, Imran Akbar, Sukumar Kalmanje, Leandro Silva, John Stamford, Yanai Golany, Jim Piazza, Sriram Sankar

IEEE/IFIP DSN - June 29, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy