Publication

Constrained Bayesian Optimization with Noisy Experiments

Bayesian Analysis 2018


Abstract

Randomized experiments are the gold standard for evaluating the effects of changes to real-world systems. Data in these tests may be difficult to collect and outcomes may have high variance, resulting in potentially large measurement error. Bayesian optimization is a promising technique for efficiently optimizing multiple continuous parameters, but existing approaches degrade in performance when the noise level is high, limiting its applicability to many randomized experiments. We derive an expression for expected improvement under greedy batch optimization with noisy observations and noisy constraints, and develop a quasi-Monte Carlo approximation that allows it to be efficiently optimized. Simulations with synthetic functions show that optimization performance on noisy, constrained problems outperforms existing methods. We further demonstrate the effectiveness of the method with two real-world experiments conducted at Facebook: optimizing a ranking system, and optimizing server compiler flags.

Related Publications

All Publications

September 17, 2018

Efficient tuning of online systems using Bayesian optimization

Ben Letham, Brian Karrer, Guilherme Ottoni, Eytan Bakshy

COLING - December 8, 2020

Best Practices for Data-Efficient Modeling in NLG: How to Train Production-Ready Neural Models with Less Data

Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini Challa, Pinar Donmez, Peyman Heidari, Hakan Inan, Shashank Jain, Anuj Kumar, Shawn Mei, Karthik Mohan, Michael White

NeurIPS - November 30, 2020

Adversarial Attacks on Linear Contextual Bandits

Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud, Alessandro Lazaric, Matteo Pirotta

NeurIPS - December 7, 2020

Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees

Shali Jiang, Daniel Jiang, Max Balandat, Brian Karrer, Jacob R. Gardner, Roman Garnett

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy