Publication

Bandana: Using Non-Volatile Memory for Storing Deep Learning Models

Conference on Systems and Machine Learning (SysML)


Abstract

Typical large-scale recommender systems use deep learning models that are stored on a large amount of DRAM. These models often rely on embeddings, which consume most of the required memory. We present Bandana, a storage system that reduces the DRAM footprint of embeddings, by using Non-volatile Memory (NVM) as the primary storage medium, with a small amount of DRAM as cache. The main challenge in storing embeddings on NVM is its limited read bandwidth compared to DRAM. Bandana uses two primary techniques to address this limitation: first, it stores embedding vectors that are likely to be read together in the same physical location, using hypergraph partitioning, and second, it decides the number of embedding vectors to cache in DRAM by simulating dozens of small caches. These techniques allow Bandana to increase the effective read bandwidth of NVM by 2-3× and thereby significantly reduce the total cost of ownership.

Related Publications

All Publications

11-Gbps Broadband Modem-Agnostic Line-of-Sight MIMO Over the Range of 13 km

Yan Yan, Pratheep Bondalapati, Abhishek Tiwari, Chiyun Xia, Andy Cashion, Dawei Zhang, Tobias Tiecke, Qi Tang, Michael Reed, Dudi Shmueli, Hongyu Zhou, Bob Proctor, Joseph Stewart

IEEE GLOBECOM - January 21, 2019

Weak-Attention Suppression For Transformer Based Speech Recognition

Yangyang Shi, Yongqiang Wang, Chunyang Wu, Christian Fuegen, Frank Zhang, Duc Le, Ching-Feng Yeh, Michael L. Seltzer

Interspeech - October 26, 2020

Machine Learning in Compilers: Past, Present, and Future

Hugh Leather, Chris Cummins

FDL - September 14, 2020

Unsupervised Cross-Domain Singing Voice Conversion

Adam Polyak, Lior Wolf, Yossi Adi, Yaniv Taigman

Interspeech - August 8, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy