Publication

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

The Conference on Uncertainty in Artificial Intelligence (UAI)


Abstract

Bayesian optimization (BO) is a popular method for optimizing expensive-to-evaluate black-box functions. BO budgets are typically given in iterations, which implicitly assumes each evaluation has the same cost. In fact, in many BO applications, evaluation costs vary significantly in different regions of the search space. In hyperparameter optimization, the time spent on neural network training increases with layer size; in clinical trials, the monetary cost of drug compounds vary; and in optimal control, control actions have differing complexities. Cost-constrained BO measures convergence with alternative cost metrics such as time, money, or energy, for which the sample efficiency of standard BO methods is ill-suited. For cost-constrained BO, cost efficiency is far more important than sample efficiency. In this paper, we formulate cost-constrained BO as a constrained Markov decision process (CMDP), and develop an efficient rollout approximation to the optimal CMDP policy that takes both the cost and future iterations into account. We validate our method on a collection of hyperparameter optimization problems as well as a sensor set selection application.

Related Publications

All Publications

Interspeech - October 12, 2021

LiRA: Learning Visual Speech Representations from Audio through Self-supervision

Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, Maja Pantic

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

IEEE Transactions on Image Processing Journal - March 9, 2021

Inspirational Adversarial Image Generation

Baptiste Rozière, Morgane Rivière, Olivier Teytaud, Jérémy Rapin, Yann LeCun, Camille Couprie

ICML - July 12, 2020

Lookahead-Bounded Q-Learning

Ibrahim El Shar, Daniel Jiang

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy