Weighted Hashing for Fast Large Scale Similarity Search

ACM International Conference on Information and Knowledge Management (CIKM)


Similarity search, or finding approximate nearest neighbors, is an important technique for many applications. Many recent research demonstrate that hashing methods can achieve promising results for large scale similarity search due to its computational and memory efficiency.

However, most existing hashing methods treat all hashing bits equally and the distance between data examples is calculated as the Hamming distance between their hashing codes, while different hashing bits may carry different amount of information.

This paper proposes a novel method, named Weighted Hashing (WeiHash), to assign different weights to different hashing bits. The hashing codes and their corresponding weights are jointly learned in a unified framework by simultaneously preserving the similarity between data examples and balancing the variance of each hashing bit.

An iterative coordinate descent optimization algorithm is designed to derive desired hashing codes and weights. Extensive experiments on two large scale datasets demonstrate the superior performance of the proposed research over several state-of-the-art hashing methods.

Related Publications

All Publications

LEEP: A New Measure to Evaluate Transferability of Learned Representations

Cuong V. Nguyen, Tal Hassner, Matthias Seeger, Cedric Archambeau

ICML - July 13, 2020

The Differentiable Cross-Entropy Method

Brandon Amos, Denis Yarats

ICML - July 12, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy