VoiceLoop: Voice Fitting and Synthesis via a Phonolgoical Loop

International Conference on Learning Representations (ICLR)


We present a new neural text to speech (TTS) method that is able to transform text to speech in voices that are sampled in the wild. Unlike other systems, our solution is able to deal with unconstrained voice samples and without requiring aligned phonemes or linguistic features. The network architecture is simpler than those in the existing literature and is based on a novel shifting buffer working memory. The same buffer is used for estimating the attention, computing the output audio, and for updating the buffer itself. The input sentence is encoded using a context-free lookup table that contains one entry per character or phoneme. The speakers are similarly represented by a short vector that can also be fitted to new identities, even with only a few samples. Variability in the generated speech is achieved by priming the buffer prior to generating the audio. Experimental results on several datasets demonstrate convincing capabilities, making TTS accessible to a wider range of applications. In order to promote reproducibility, we release our source code and models.

Related Publications

All Publications

COLING - December 8, 2020

Best Practices for Data-Efficient Modeling in NLG: How to Train Production-Ready Neural Models with Less Data

Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini Challa, Pinar Donmez, Peyman Heidari, Hakan Inan, Shashank Jain, Anuj Kumar, Shawn Mei, Karthik Mohan, Michael White

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

NeurIPS - November 25, 2020

Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian

Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer, Alistair Letcher, Alex Peysakhovich, Aldo Pacchiano, Jakob Foerster

NeurIPS - December 7, 2020

Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees

Shali Jiang, Daniel Jiang, Max Balandat, Brian Karrer, Jacob R. Gardner, Roman Garnett

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy