Publication

Video Modeling with Correlation Networks

Conference on Computer Vision and Pattern Recognition (CVPR)


Abstract

Motion is a salient cue to recognize actions in video. Modern action recognition models leverage motion information either explicitly by using optical flow as input or implicitly by means of 3D convolutional filters that simultaneously capture appearance and motion information. This paper proposes an alternative approach based on a learnable correlation operator that can be used to establish frame-to-frame matches over convolutional feature maps in the different layers of the network. The proposed architecture enables the fusion of this explicit temporal matching information with traditional appearance cues captured by 2D convolution. Our correlation network compares favorably with widely-used 3D CNNs for video modeling, and achieves competitive results over the prominent two-stream network while being much faster to train. We empirically demonstrate that correlation networks produce strong results on a variety of video datasets, and outperform the state of the art on four popular benchmarks for action recognition: Kinetics, Something-Something, Diving48 and Sports1M.

Related Publications

All Publications

SIGGRAPH - August 17, 2020

Consistent Video Depth Estimation

Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, Johannes Kopf

ICML - August 13, 2020

Meta-Learning with Shared Amortized Variational Inference

Ekaterina Iakovleva, Jakob Verbeek, Karteek Alahari

CVPR - June 30, 2019

Audio Visual Scene-Aware Dialog

Huda Alamri, Vincent Cartillier, Abhishek Das, Jue Wang, Anoop Cherian, Irfan Essa, Dhruv Batra, Tim K. Marks, Chiori Hori, Peter Anderson, Stefan Lee, Devi Parikh

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy