Publication

Variable Computation in Recurrent Neural Networks

International Conference on Learning Representations (ICLR) 2017


Abstract

Recurrent neural networks (RNNs) have been used extensively and with increasing success to model various types of sequential data. Much of this progress has been achieved through devising recurrent units and architectures with the flexibility to capture complex statistics in the data, such as long range dependency or localized attention phenomena. However, while many sequential data (such as video, speech or language) can have highly variable information flow, most recurrent models still consume input features at a constant rate and perform a constant number of computations per time step, which can be detrimental to both speed and model capacity. In this paper, we explore a modification to existing recurrent units which allows them to learn to vary the amount of computation they perform at each step, without prior knowledge of the sequence’s time structure. We show experimentally that not only do our models require fewer operations, they also lead to better performance overall on evaluation tasks.

Related Publications

All Publications

SIGGRAPH - August 9, 2021

Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports

Jungdam Won, Deepak Gopinath, Jessica Hodgins

CVPR - June 20, 2021

Ego-Exo: Transferring Visual Representations from Third-person to First-person Videos

Yanghao Li, Tushar Nagarajan, Bo Xiong, Kristen Grauman

ICML - July 18, 2021

Align, then memorise: the dynamics of learning with feedback alignment

Maria Refinetti, Stéphane d'Ascoli, Ruben Ohana, Sebastian Goldt

CVPR - June 19, 2021

Intentonomy: a Dataset and Study towards Human Intent Understanding

Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie, Ser-Nam Lim

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy