Publication

Value-aware Quantization for Training and Inference of Neural Networks

European Conference on Computer Vision (ECCV)


Abstract

We propose a novel value-aware quantization which applies aggressively reduced precision to the majority of data while separately handling a small amount of large values in high precision, which reduces total quantization errors under very low precision. We present new techniques to apply the proposed quantization to training and inference. The experiments show that our method with 3-bit activations (with 2% of large ones) can give the same training accuracy as full-precision one while offering significant (41.6% and 53.7%) reductions in the memory cost of activations in ResNet-152 and Inception-v3 compared with the state-of-the-art method. Our experiments also show that deep networks such as Inception-v3, ResNet-101 and DenseNet-121 can be quantized for inference with 4-bit weights and activations (with 1% 16-bit data) within 1% top-1 accuracy drop.

Related Publications

All Publications

EMNLP - October 31, 2021

Evaluation Paradigms in Question Answering

Pedro Rodriguez, Jordan Boyd-Graber

ASRU - December 13, 2021

Incorporating Real-world Noisy Speech in Neural-network-based Speech Enhancement Systems

Yangyang Xia, Buye Xu, Anurag Kumar

Uncertainty and Robustness in Deep Learning Workshop at ICML - June 24, 2021

DAIR: Data Augmented Invariant Regularization

Tianjian Huang, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami

IROS - September 1, 2021

Success Weighted by Completion Time: A Dynamics-Aware Evaluation Criteria for Embodied Navigation

Naoki Yokoyama, Sehoon Ha, Dhruv Batra

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy