Training Deep Learning Recommendation Model with Quantized Collective Communications

Conference on Knowledge Discovery and Data Mining (KDD)


Deep Learning Recommendation Model (DLRM) captures our representative model architectures developed for click-through-rate (CTR) prediction based on high-dimensional sparse categorical data. Collective communications can account for a significant fraction of time in synchronous training of DLRM at scale. In this work, we explore using fine-grain integer quantization to reduce the communication volume of alltoall and allreduce collectives. We emulate quantized alltoall and allreduce, the latter using ring or recursive-doubling and each with optional carried-forward error compensation. We benchmark accuracy loss of quantized alltoall and allreduce with a representative DLRM model and Kaggle 7D dataset. We show that alltoall forward and backward passes, and dense allreduce can be quantized to 4 bits without accuracy loss compared to full-precision training.

Related Publications

All Publications

Interspeech - October 12, 2021

LiRA: Learning Visual Speech Representations from Audio through Self-supervision

Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, Maja Pantic

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

IEEE Transactions on Image Processing Journal - March 9, 2021

Inspirational Adversarial Image Generation

Baptiste Rozière, Morgane Rivière, Olivier Teytaud, Jérémy Rapin, Yann LeCun, Camille Couprie

ICML - July 12, 2020

Lookahead-Bounded Q-Learning

Ibrahim El Shar, Daniel Jiang

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy