Stability of Decentralized Gradient Descent in Open Multi-Agent Systems

IEEE Conference on Decision and Control (CDC)


The aim of decentralized gradient descent (DGD) is to minimize a sum of n functions held by interconnected agents. We study the stability of DGD in open contexts where agents can join or leave the system, resulting each time in the addition or the removal of their function from the global objective. Assuming all functions are smooth, strongly convex, and their minimizers all lie in a given ball, we characterize the sensitivity of the global minimizer of the sum of these functions to the removal or addition of a new function and provide bounds in O min κ0.5, κ/n0.5, κ1.5/nwhere κ is the condition number. We also show that the states of all agents can be eventually bounded independently of the sequence of arrivals and departures. The magnitude of the bound scales with the importance of the interconnection, which also determines the accuracy of the final solution in the absence of arrival and departure, exposing thus a potential trade-off between accuracy and sensitivity. Our analysis relies on the formulation of DGD as gradient descent on an auxiliary function. The tightness of our results is analyzed using the PESTO Toolbox.

Related Publications

All Publications

MICCAI - October 5, 2020

Active MR k-space Sampling with Reinforcement Learning

Luis Pineda, Sumana Basu, Adriana Romero, Roberto Calandra, Michal Drozdzal

Multimodal Video Analysis Workshop at ECCV - August 23, 2020

Audio-Visual Instance Discrimination

Pedro Morgado, Nuno Vasconcelos, Ishan Misra

ICML - November 3, 2020

Learning Near Optimal Policies with Low Inherent Bellman Error

Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill

AISTATS - November 3, 2020

A single algorithm for both restless and rested rotting bandits

Julien Seznec, Pierre Menard, Alessandro Lazaric, Michal Valko

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy