Publication

Semisupervised Learning on Heterogeneous Graphs and its Applications to Facebook News Feed

International Conference on Knowledge Discovery and Data Mining (KDD)


Abstract

Graph-based semi-supervised learning is a fundamental machine learning problem, and has been well studied. Most studies focus on homogeneous networks (e.g. citation network, friend network). In the present paper, we propose the Heterogeneous Embedding Label Propagation (HELP) algorithm, a graph-based semi-supervised deep learning algorithm, for graphs that are characterized by heterogeneous node types. Empirically, we demonstrate the effectiveness of this method in domain classification tasks with Facebook user-domain interaction graph, and compare the performance of the proposed HELP algorithm with the state of the art algorithms. We show that the HELP algorithm improves the predictive performance across multiple tasks, together with semantically meaningful embedding that are discriminative for downstream classification or regression tasks.

Related Publications

All Publications

LEEP: A New Measure to Evaluate Transferability of Learned Representations

Cuong V. Nguyen, Tal Hassner, Matthias Seeger, Cedric Archambeau

ICML - July 13, 2020

The Differentiable Cross-Entropy Method

Brandon Amos, Denis Yarats

ICML - July 12, 2020

Growing Action Spaces

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

July 14, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy