Publication

Self-Supervised Feature Learning for Semantic Segmentation of Overhead Imagery

British Machine Vision Convention (BMVC)


Abstract

Overhead imageries play a crucial role in many applications such as urban planning, crop yield forecasting, mapping, and policy making. Semantic segmentation could enable automatic, efficient, and large-scale understanding of overhead imageries for these applications. However, semantic segmentation of overhead imageries is a challenging task, primarily due to the large domain gap from existing research in ground imageries, unavailability of large-scale dataset with pixel-level annotations, and inherent complexity in the task. Readily available vast amount of unlabeled overhead imageries share more common structures and patterns compared to the ground imageries, therefore, its large-scale analysis could benefit from unsupervised feature learning techniques.

In this work, we study various self-supervised feature learning techniques for semantic segmentation of overhead imageries. We choose image semantic inpainting as a self-supervised task [36] for our experiments due to its proximity to the semantic segmentation task. We (i) show that existing approaches are inefficient for semantic segmentation, (ii) propose architectural changes towards self-supervised learning for semantic segmentation, (iii) propose an adversarial training scheme for self-supervised learning by increasing the pretext task’s difficulty gradually and show that it leads to learning better features, and (iv) propose a unified approach for overhead scene parsing, road network extraction, and land cover estimation. Our approach improves over training from scratch by more than 10% and ImageNet pre-trained network by more than 5% mIOU.

Related Publications

All Publications

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

ISMAR - July 29, 2021

Instant Visual Odometry Initialization for Mobile AR

Alejo Concha, Michael Burri, Jesus Briales, Christian Forster, Luc Oth

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

ACM MM - October 20, 2021

EVRNet: Efficient Video Restoration on Edge Devices

Sachin Mehta, Amit Kumar, Fitsum Reda, Varun Nasery, Vikram Mulukutla, Rakesh Ranjan, Vikas Chandra

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy