Publication

Scaling up online speech recognition using ConvNets

arXiv


Abstract

We design an online end-to-end speech recognition system based on Time-Depth Separable (TDS) convolutions and Connectionist Temporal Classification (CTC). The system has almost three times the throughput of a well tuned hybrid ASR baseline while also having lower latency and a better word error rate. We improve the core TDS architecture in order to limit the future context and hence reduce latency while maintaining accuracy. Also important to the efficiency of the recognizer is our highly optimized beam search decoder. To show the impact of our design choices, we analyze throughput, latency and accuracy and also discuss how these metrics can be tuned based on the user requirements.

Related Publications

All Publications

EMNLP - October 31, 2021

Evaluation Paradigms in Question Answering

Pedro Rodriguez, Jordan Boyd-Graber

NAACL - June 6, 2021

Leveraging Slot Descriptions for Zero-Shot Cross-Domain Dialogue State Tracking

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu, Andrea Madotto, Eunjoon Cho, Rajen Subba

EMNLP - November 16, 2020

Abusive Language Detection using Syntactic Dependency Graphs

Kanika Narang, Chris Brew

Interspeech - August 31, 2021

slimIPL: Language-Model-Free Iterative Pseudo-Labeling

Tatiana Likhomanenko, Qiantong Xu, Jacob Kahn, Gabriel Synnaeve, Ronan Collobert

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy