Publication

Scaling up online speech recognition using ConvNets

arXiv


Abstract

We design an online end-to-end speech recognition system based on Time-Depth Separable (TDS) convolutions and Connectionist Temporal Classification (CTC). The system has almost three times the throughput of a well tuned hybrid ASR baseline while also having lower latency and a better word error rate. We improve the core TDS architecture in order to limit the future context and hence reduce latency while maintaining accuracy. Also important to the efficiency of the recognizer is our highly optimized beam search decoder. To show the impact of our design choices, we analyze throughput, latency and accuracy and also discuss how these metrics can be tuned based on the user requirements.

Related Publications

All Publications

Weak-Attention Suppression For Transformer Based Speech Recognition

Yangyang Shi, Yongqiang Wang, Chunyang Wu, Christian Fuegen, Frank Zhang, Duc Le, Ching-Feng Yeh, Michael L. Seltzer

Interspeech - October 26, 2020

Unsupervised Cross-Domain Singing Voice Conversion

Adam Polyak, Lior Wolf, Yossi Adi, Yaniv Taigman

Interspeech - August 8, 2020

TTS Skins: Speaker Conversion via ASR

Adam Polyak, Lior Wolf, Yaniv Taigman

Interspeech - August 9, 2020

Entropy Minimization In Emergent Languages

Eugene Kharitonov, Rahma Chaabouni, Diane Bouchacourt, Marco Baroni

ICML - August 13, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy