RAMP-TAO: Layering Atomic Transactions on Facebook’s Online TAO Data Store

International Conference on Very Large Data Bases (VLDB)


Facebook’s graph store TAO, like many other distributed data stores, traditionally prioritizes availability, efficiency, and scalability over strong consistency or isolation guarantees to serve its large, read-dominant workloads. As product developers build diverse applications on top of this system, they increasingly seek transactional semantics. However, providing advanced features for select applications while preserving the system’s overall reliability and performance is a continual challenge. In this paper, we first characterize developer desires for transactions that have emerged over the years and describe the current failure-atomic (i.e., write) transactions offered by TAO. We then explore how to introduce an intuitive read transaction API. We highlight the need for atomic visibility guarantees in this API with a measurement study on potential anomalies that occur without stronger isolation for reads. Our analysis shows that 1 in 1,500 batched reads reflects partial transactional updates, which complicate the developer experience and lead to unexpected results. In response to our findings, we present the RAMP-TAO protocol, a variation based on the Read Atomic Multi-Partition (RAMP) protocols that can be feasibly deployed in production with minimal overhead while ensuring atomic visibility for a read-optimized workload at scale.

Won Best Industry Paper Award at VLDB 2021

Related Publications

All Publications

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

TSE - June 29, 2021

Learning From Mistakes: Machine Learning Enhanced Human Expert Effort Estimates

Federica Sarro, Rebecca Moussa, Alessio Petrozziello, Mark Harman

Management Science (journal) - September 30, 2021

Pacing Equilibrium in First Price Auction Markets

Vincent Conitzer, Christian Kroer, Debmalya Panigrahi, Okke Schrijvers, Nicolas E. Stier-Moses, Eric Sodomka, Christopher A. Wilkens

IEEE ICIP - September 19, 2021

Rate Estimation Techniques for Encoder Parallelization

Gaurang Chaudhari, Hsiao-Chiang Chuang, Igor Koba, Hariharan Lalgudi

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy