Publication

Probabilistic Neural-symbolic Models for Interpretable Visual Question Answering

International Conference on Machine Learning (ICML)


Abstract

We propose a new class of probabilistic neural-symbolic models, that have symbolic functional programs as a latent, stochastic variable. Instantiated in the context of visual question answering, our probabilistic formulation offers two key conceptual advantages over prior neural-symbolic models for VQA. Firstly, the programs generated by our model are more understandable while requiring less number of teaching examples. Secondly, we show that one can pose counterfactual scenarios to the model, to probe its beliefs on the programs that could lead to a specified answer given an image. Our results on the CLEVR and SHAPES datasets verify our hypotheses, showing that the model gets better program (and answer) prediction accuracy even in the low data regime, and allows one to probe the coherence and consistency of reasoning performed.

Related Publications

All Publications

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

Journal of Big Data - July 19, 2021

Cumulative deviation of a subpopulation from the full population

Mark Tygert

NeurIPS - July 16, 2021

Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization

Geoff Pleiss, Martin Jankowiak, David Eriksson, Anil Damle, Jacob R. Gardner

ICML - July 19, 2021

Making Paper Reviewing Robust to Bid Manipulation Attacks

Ruihan Wu, Chuan Guo, Felix Wu, Rahul Kidambi, Laurens van der Maaten, Kilian Q. Weinberger

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy