Publication

Pixel Codec Avatars

Conference on Computer Vision and Pattern Recognition (CVPR)


Abstract

Telecommunication with photorealistic avatars in virtual or augmented reality is a promising path for achieving authentic face-to-face communication in 3D over remote physical distances. In this work, we present the Pixel Codec Avatars (PiCA): a deep generative model of 3D human faces that achieves state of the art reconstruction performance while being computationally efficient and adaptive to the rendering conditions during execution. Our model combines two core ideas: (1) a fully convolutional architecture for decoding spatially varying features, and (2) a rendering-adaptive per-pixel decoder. Both techniques are integrated via a dense surface representation that is learned in a weakly-supervised manner from low-topology mesh tracking over training images. We demonstrate that PiCA improves reconstruction over existing techniques across testing expressions and views on persons of different gender and skin tone. Importantly, we show that the PiCA model is much smaller than the state-of-art baseline model, and makes multi-person telecommunication possible: on a single Oculus Quest 2 mobile VR headset, 5 avatars are rendered in realtime in the same scene.

SUPPLEMENTAL MATERIAL

Related Publications

All Publications

Interspeech - October 12, 2021

LiRA: Learning Visual Speech Representations from Audio through Self-supervision

Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, Maja Pantic

CVPR - June 20, 2021

Temporally-Weighted Hierarchical Clustering for Unsupervised Action Segmentation

M. Saquib Sarfraz, Naila Murray, Vivek Sharma, Ali Diba, Luc Van Gool, Rainer Stiefelhagen

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

3DV - November 18, 2021

Recovering Real-World Reflectance Properties and Shading From HDR Imagery

Bjoern Haefner, Simon Green, Alan Oursland, Daniel Andersen, Michael Goesele, Daniel Cremers, Richard Newcombe, Thomas Whelan

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy