Optimizing the Spatial Decomposition Method for Binaural Rendering

EAA/SFA e-Forum Acusticum (e-FA)


The spatial decomposition method (SDM) aims at parameterizing a sound field as a succession of plane waves, allowing the analysis and rendering of multichannel room impulse responses (RIRs). The method was originally developed for the use with open microphone arrays, utilizing time differences of arrival to compute directional estimates. A later version introduced the use broadband pseudo-intensity vectors from B-format RIRs. Through simulations and measurements, we explore optimal values for the various processing parameters such as array size and temporal processing window size and compare the results of TDOA and PIV DOA estimation. We introduce spatial clustering of reflections as a post-processing step, which reduces the un-natural direction-of-arrival spread of late reflections at the expense of spatial distortion for consecutive reflections. To address whitening of late reverberation, we introduce RTMod+AP, an equalization approach specifically designed for the correction of binaural RIRs (BRIRs), allowing the use of dense HRTF datasets for the synthesis of SDM data. In a perceptual experiment we investigate the links between spatial resolution and plausibility of binaural SDM auralizations by directly comparing head-tracked renderings against real loudspeakers.

Related Publications

All Publications

AES - August 13, 2020

Listener-Preferred Headphone Frequency Response for Stereo and Spatial Audio Content

Isaac Engel, David Lou Alon, Kevin Scheumann, Ravish Mehra

ICMI - December 4, 2019

To React or not to React: End-to-End Visual Pose Forecasting for Personalized Avatar during Dyadic Conversations

Chaitanya Ahuja, Shugao Ma, Louis-Philippe Morency, Yaser Sheikh

The Journal of the Audio Engineering Society (AES) - May 3, 2021

Full Range Omnidirectional Sound Source for Near-Field Head-Related Transfer-Functions Measurement

Bartlomiej Chojnacki, Sang-Ik Terry Cho, Ravish Mehra

ICLR - May 4, 2021

Neural Synthesis of Binaural Speech from Mono Audio

Alexander Richard, Dejan Markovic, Israel D. Gebru, Steven Krenn, Gladstone Butler, Fernando De la Torre, Yaser Sheikh

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy