One-Shot Domain Adaptation For Face Generation

Conference on Computer Vision and Pattern Recognition (CVPR)


In this paper, we propose a framework capable of generating face images that fall into the same distribution as that of a given one-shot example. We leverage a pre-trained StyleGAN model that already learned the generic face distribution. Given the one-shot target, we develop an iterative optimization scheme that rapidly adapts the weights of the model to shift the output’s high-level distribution to the target’s. To generate images of the same distribution, we introduce a style-mixing technique that transfers the low-level statistics from the target to faces randomly generated with the model. With that, we are able to generate an unlimited number of faces that inherit from the distribution of both generic human faces and the one-shot example. The newly generated faces can serve as augmented training data for other downstream tasks. Such setting is appealing as it requires labeling very few, or even one example, in the target domain, which is often the case of real-world face manipulations that result from a variety of unknown and unique distributions, each with extremely low prevalence. We show the effectiveness of our one-shot approach for detecting face manipulations and compare it with other few-shot domain adaptation methods qualitatively and quantitatively.

Related Publications

All Publications

SIGGRAPH - August 9, 2021

Deep Relightable Appearance Models for Animatable Faces

Sai Bi, Stephen Lombardi, Shunsuke Saito, Tomas Simon, Shih-En Wei, Kevyn Mcphail, Ravi Ramamoorthi, Yaser Sheikh, Jason Saragih

AISTATS - April 13, 2021

Continual Learning using a Bayesian Nonparametric Dictionary of Weight Factors

Nikhil Mehta, Kevin J Liang, Vinay K Verma, Lawrence Carin

NeurIPS - December 6, 2020

Improved Sample Complexity for Incremental Autonomous Exploration in MDPs

Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric

NeurIPS - December 7, 2020

Labelling unlabelled videos from scratch with multi-modal self-supervision

Yuki M. Asano, Mandela Patrick, Christian Rupprecht, Andrea Vedaldi

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy