Publication

MSURU: Large Scale E-commerce Image Classification With Weakly Supervised Search Data

Conference on Knowledge Discovery and Data Mining (KDD)


Abstract

In this paper we present a deployed image recognition system used in a large scale commerce search engine, which we call MSURU. It is designed to process product images uploaded daily to Facebook Marketplace. Social commerce is a growing area within Facebook and understanding visual representations of product content is important for search and recommendation applications on Marketplace. In this paper, we present techniques we used to develop efficient large-scale image classifiers using weakly supervised search log data. We perform extensive evaluation of presented techniques, explain practical experience of developing large-scale classification systems and discuss challenges we faced. Our system, MSURU out-performed current state of the art system developed at Facebook [23] by 16% in e-commerce domain. MSURU is deployed to production with significant improvements in search success rate and active interactions on Facebook Marketplace.

Related Publications

All Publications

Weak-Attention Suppression For Transformer Based Speech Recognition

Yangyang Shi, Yongqiang Wang, Chunyang Wu, Christian Fuegen, Frank Zhang, Duc Le, Ching-Feng Yeh, Michael L. Seltzer

Interspeech - October 26, 2020

Machine Learning in Compilers: Past, Present, and Future

Hugh Leather, Chris Cummins

FDL - September 14, 2020

Unsupervised Cross-Domain Singing Voice Conversion

Adam Polyak, Lior Wolf, Yossi Adi, Yaniv Taigman

Interspeech - August 8, 2020

TTS Skins: Speaker Conversion via ASR

Adam Polyak, Lior Wolf, Yaniv Taigman

Interspeech - August 9, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy