Publication

Modeling Self-Disclosure in Social Networking Sites

ACM CSCW


Abstract

Social networking sites (SNSs) offer users a platform to build and maintain social connections. Understanding when people feel comfortable sharing information about themselves on SNSs is critical to a good user experience, because self-disclosure helps maintain friendships and increase relationship closeness. This observational research develops a machine learning model to measure self-disclosure in SNSs and uses it to understand the contexts where it is higher or lower. Features include emotional valence, social distance between the poster and people mentioned in the post, the language similarity between the post and the community and post topic. To validate the model and advance our understanding about online self- disclosure, we applied it to de-identified, aggregated status updates from Facebook users. Results show that women self-disclose more than men. People with a stronger desire to manage impressions self-disclose less. Network size is negatively associated with self-disclosure, while tie strength and network density are positively associated.

Related Publications

All Publications

ACM Transactions on Applied Perception Journal (ACM TAP) - September 16, 2021

Evaluating Grasping Visualizations and Control Modes in a VR Game

Alex Adkins, Lorraine Lin, Aline Normoyle, Ryan Canales, Yuting Ye, Sophie Jörg

Journal of Big Data - July 19, 2021

Cumulative deviation of a subpopulation from the full population

Mark Tygert

CSCW - November 3, 2020

The dynamics of U.S. college network formation on Facebook

Jan Overgoor, Bogdan State, Lada Adamic

PLOS ONE Journal - September 8, 2021

Large-scale decrease in the social salience of climate change during the COVID-19 pandemic

Brian R. Spisak, Bogdan State, Ingrid van de Leemput, Marten Scheffer, Yuwei Liu

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy