Publication

Memorize or generalize? Searching for a compositional RNN in a haystack

IJCAI-ECAI Workshop: Architectures and Evaluation for Generality, Autonomy & Progress in AI


Abstract

Neural networks are very powerful learning systems, but they do not readily generalize from one task to the other. This is partly due to the fact that they do not learn in a compositional way, that is, by discovering skills that are shared by different tasks, and recombining them to solve new problems. In this paper, we explore the compositional generalization capabilities of recurrent neural networks (RNNs). We first propose the lookup table composition domain as a simple setup to test compositional behaviour and show that it is theoretically possible for a standard RNN to learn to behave compositionally in this domain when trained with standard gradient descent and provided with additional supervision. We then remove this additional supervision and perform a search over a large number of model initializations to investigate the proportion of RNNs that can still converge to a compositional solution. We discover that a small but non-negligible proportion of RNNs do reach partial compositional solutions even without special architectural constraints. This suggests that a combination of gradient descent and evolutionary strategies directly favouring the minority models that developed more compositional approaches might suffice to lead standard RNNs towards compositional solutions.

Related Publications

All Publications

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

ICML - July 18, 2021

Variational Auto-Regressive Gaussian Processes for Continual Learning

Sanyam Kapoor, Theofanis Karaletsos, Thang D. Bui

ICCV - October 11, 2021

Contrast and Classify: Training Robust VQA Models

Yash Kant, Abhinav Moudgil, Dhruv Batra, Devi Parikh, Harsh Agrawal

ICCV - October 10, 2021

Revitalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Taosha Fan, Kalyan Vasudev Alwala, Donglai Xiang, Weipeng Xu, Todd Murphey, Mustafa Mukadam

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy