Publication

Lookahead converges to stationary points of smooth non-convex functions

International Conference on Acoustics, Speech, and Signal Processing (ICASSP)


Abstract

The Lookahead optimizer [Zhang et al., 2019] was recently proposed and demonstrated to improve performance of stochastic first-order methods for training deep neural networks. Lookahead can be viewed as a two time-scale algorithm, where the fast dynamics (inner optimizer) determine a search direction and the slow dynamics (outer optimizer) perform updates by moving along this direction. We prove that, with appropriate choice of step-sizes, Lookahead converges to a stationary point of smooth non-convex functions. Although Lookahead is described and implemented as a serial algorithm, our analysis is based on viewing Lookahead as a multi-agent optimization method with two agents communicating periodically.

Related Publications

All Publications

Spatially Aware Multimodal Transformers for TextVQA

Yash Kant, Dhruv Batra, Peter Anderson, Alexander Schwing, Devi Parikh, Jiasen Lu, Harsh Agrawal

ECCV - August 23, 2020

Perceiving 3D Human-Object Spatial Arrangements from a Single Image in the Wild

Jason Y. Zhang, Sam Pepose, Hanbyul Joo, Deva Ramanan, Jitendra Malik, Angjoo Kanazawa

ECCV - August 23, 2020

ContactPose: A Dataset of Grasps with Object Contact and Hand Pose

Samarth Brahmbhatt, Chengcheng Tang, Christopher D. Twigg, Charles C. Kemp, James Hays

ECCV - August 23, 2020

Learning to Generate Grounded Visual Captions without Localization Supervision

Chih-Yao Ma, Yannis Kalantidis, Ghassan AlRegib, Peter Vajda, Marcus Rohrbach, Zsolt Kira

ECCV - August 24, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy