Living a Discrete Life in a Continuous World: Reference in Cross-Modal Entity Tracking

Proceedings of IWCS (12th International Conference on Computational Semantics)


Reference is a crucial property of language that allows us to connect linguistic expressions to the world. Modeling it requires handling both continuous and discrete aspects of meaning. Data-driven models excel at the former, but struggle with the latter, and the reverse is true for symbolic models.

This paper (a) introduces a concrete referential task to test both aspects, called cross-modal entity tracking; (b) proposes a neural network architecture that uses external memory to build an entity library inspired in the DRSs of DRT, with a mechanism to dynamically introduce new referents or add information to referents that are already in the library.

Our model shows promise: it beats traditional neural network architectures on the task. However, it is still outperformed by Memory Networks, another model with external memory.

Related Publications

All Publications

COLING - December 8, 2020

Best Practices for Data-Efficient Modeling in NLG: How to Train Production-Ready Neural Models with Less Data

Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini Challa, Pinar Donmez, Peyman Heidari, Hakan Inan, Shashank Jain, Anuj Kumar, Shawn Mei, Karthik Mohan, Michael White

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

NeurIPS - November 25, 2020

Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian

Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer, Alistair Letcher, Alex Peysakhovich, Aldo Pacchiano, Jakob Foerster

NeurIPS - December 7, 2020

Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees

Shali Jiang, Daniel Jiang, Max Balandat, Brian Karrer, Jacob R. Gardner, Roman Garnett

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy