Publication

Learning to Optimize Halide with Tree Search and Random Programs

ACM SIGGRAPH


Abstract

We present a new algorithm to automatically schedule Halide programs for high-performance image processing and deep learning. We significantly improve upon the performance of previous methods, which considered a limited subset of schedules. We define a parameterization of possible schedules much larger than prior methods and use a variant of beam search to search over it. The search optimizes runtime predicted by a cost model based on a combination of new derived features and machine learning. We train the cost model by generating and featurizing hundreds of thousands of random programs and schedules. We show that this approach operates effectively with or without autotuning. It produces schedules which are on average almost twice as fast as the existing Halide autoscheduler without autotuning, or more than twice as fast with, and is the first automatic scheduling algorithm to significantly outperform human experts on average.

Related Publications

All Publications

SIGGRAPH - August 9, 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation

He Zhang, Yuting Ye, Takaaki Shiratori, Taku Komura

SIGGRAPH - August 9, 2021

Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports

Jungdam Won, Deepak Gopinath, Jessica Hodgins

CVPR - June 20, 2021

Ego-Exo: Transferring Visual Representations from Third-person to First-person Videos

Yanghao Li, Tushar Nagarajan, Bo Xiong, Kristen Grauman

ICML - July 18, 2021

Align, then memorise: the dynamics of learning with feedback alignment

Maria Refinetti, Stéphane d'Ascoli, Ruben Ohana, Sebastian Goldt

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy