Publication

Learning Spatiotemporal Features with 3D Convolutional Networks

ArXiv PrePrint


Abstract

We propose a simple, yet effective approach for spatiotemporal feature learning using deep 3-dimensional convolutional networks (3D ConvNets) trained on a large scale supervised video dataset. Our findings are three-fold: 1) 3D ConvNets are more suitable for spatiotemporal feature learning compared to 2D ConvNets; 2) A homogeneous architecture with small 3x3x3 convolution kernels in all layers is among the best performing architectures for 3D ConvNets; and 3) Our learned features, namely C3D (Convolutional 3D), significantly outperform state-of-the-art methods on 4 different video analysis tasks and 6 different benchmarks with a simple linear SVM. In addition, the features are compact: achieving 52.8% accuracy on UCF101 dataset with only 10 dimensions and also very efficient to compute: 91 times faster than the current best hand-crafted features and approximately 2 orders of magnitude faster than deep learning based video classification method using optical flow. Finally, they are conceptually very simple and easy to train and use.

Related Publications

All Publications

EMNLP - October 31, 2021

Evaluation Paradigms in Question Answering

Pedro Rodriguez, Jordan Boyd-Graber

ASRU - December 13, 2021

Incorporating Real-world Noisy Speech in Neural-network-based Speech Enhancement Systems

Yangyang Xia, Buye Xu, Anurag Kumar

IROS - September 1, 2021

Success Weighted by Completion Time: A Dynamics-Aware Evaluation Criteria for Embodied Navigation

Naoki Yokoyama, Sehoon Ha, Dhruv Batra

EMNLP - November 16, 2020

Abusive Language Detection using Syntactic Dependency Graphs

Kanika Narang, Chris Brew

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy