Publication

Learning Longer Memory in Recurrent Neural Networks

Workshop at ICLR 2015


Abstract

Recurrent neural network is a powerful model that learns temporal patterns in sequential data. For a long time, it was believed that recurrent networks are difficult to train using simple optimizers, such as stochastic gradient descent, due to the so-called vanishing gradient problem. In this paper, we show that learning longer term patterns in real data, such as in natural language, is perfectly possible using gradient descent. This is achieved by using a slight structural modification of the simple recurrent neural network architecture. We encourage some of the hidden units to change their state slowly by making part of the recurrent weight matrix close to identity, thus forming a kind of longer term memory. We evaluate our model on language modeling tasks on benchmark datasets, where we obtain similar performance to the much more complex Long Short Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997).

Related Publications

All Publications

NeurIPS - December 7, 2020

Labelling unlabelled videos from scratch with multi-modal self-supervision

Yuki M. Asano, Mandela Patrick, Christian Rupprecht, Andrea Vedaldi

NeurIPS - December 7, 2020

Adversarial Example Games

Avishek Joey Bose, Gauthier Gidel, Hugo Berard, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton

NeurIPS - December 7, 2020

Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search

Linnan Wang, Rodrigo Fonseca, Yuandong Tian

NeurIPS - December 7, 2020

Joint Policy Search for Multi-agent Collaboration with Imperfect Information

Yuandong Tian, Qucheng Gong, Tina Jiang

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy