Publication

Learning Affordance Landscapes for Interaction Exploration in 3D Environments

Conference on Neural Information Processing Systems (NeurIPS)


Abstract

Embodied agents operating in human spaces must be able to master how their environment works: what objects can the agent use, and how can it use them? We introduce a reinforcement learning approach for exploration for interaction, whereby an embodied agent autonomously discovers the affordance landscape of a new unmapped 3D environment (such as an unfamiliar kitchen). Given an egocentric RGB-D camera and a high-level action space, the agent is rewarded for maximizing successful interactions while simultaneously training an image-based affordance segmentation model. The former yields a policy for acting efficiently in new environments to prepare for downstream interaction tasks, while the latter yields a convolutional neural network that maps image regions to the likelihood they permit each action, densifying the rewards for exploration. We demonstrate our idea with AI2-iTHOR. The results show agents can learn how to use new home environments intelligently and that it prepares them to rapidly address various downstream tasks like “find a knife and put it in the drawer.” Project page: http://vision.cs.utexas.edu/projects/interaction-exploration/

Related Publications

All Publications

SIGGRAPH - August 17, 2020

Consistent Video Depth Estimation

Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, Johannes Kopf

ICML - August 13, 2020

Meta-Learning with Shared Amortized Variational Inference

Ekaterina Iakovleva, Jakob Verbeek, Karteek Alahari

CVPR - June 30, 2019

Audio Visual Scene-Aware Dialog

Huda Alamri, Vincent Cartillier, Abhishek Das, Jue Wang, Anoop Cherian, Irfan Essa, Dhruv Batra, Tim K. Marks, Chiori Hori, Peter Anderson, Stefan Lee, Devi Parikh

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy