Publication

LAMV: Learning to align and match videos with kernelized temporal layers

Computer Vision and Pattern Recognition (CVPR)


Abstract

This paper considers a learnable approach for comparing and aligning videos. Our architecture builds upon and revisits temporal match kernels within neural networks: we propose a new temporal layer that finds temporal alignments by maximizing the scores between two sequences of vectors, according to a time-sensitive similarity metric parametrized in the Fourier domain. We learn this layer with a temporal proposal strategy, in which we minimize a triplet loss that takes into account both the localization accuracy and the recognition rate.

We evaluate our approach on video alignment, copy detection and event retrieval. Our approach outperforms the state on the art on temporal video alignment and video copy detection datasets in comparable setups. It also attains the best reported results for particular event search, while precisely aligning videos.

Related Publications

All Publications

NeurIPS - December 5, 2021

Interpretable agent communication from scratch (with a generic visual processor emerging on the side)

Roberto Dessì, Eugene Kharitonov, Marco Baroni

Workshop on Online Abuse and Harms (WHOAH) at ACL - November 30, 2021

Findings of the WOAH 5 Shared Task on Fine Grained Hateful Memes Detection

Lambert Mathias, Shaoliang Nie, Bertie Vidgen, Aida Davani, Zeerak Waseem, Douwe Kiela, Vinodkumar Prabhakaran

Journal of Big Data - November 6, 2021

A graphical method of cumulative differences between two subpopulations

Mark Tygert

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy