Publication

Kangaroo: Caching Billions of Tiny Objects on Flash

ACM Symposium on Operating Systems Principles (SOSP)


Abstract

Many social-media and IoT services have very large working sets consisting of billions of tiny (≈100 B) objects. Large, flash-based caches are important to serving these working sets at acceptable monetary cost. However, caching tiny objects on flash is challenging for two reasons: (i) SSDs can read/write data only in multi-KB “pages” that are much larger than a single object, stressing the limited number of times flash can be written; and (ii) very few bits per cached object can be kept in DRAM without losing flash’s cost advantage. Unfortunately, existing flash-cache designs fall short of addressing these challenges: write-optimized designs require too much DRAM, and DRAM-optimized designs require too many flash writes.

We present Kangaroo, a new flash-cache design that optimizes both DRAM usage and flash writes to maximize cache performance while minimizing cost. Kangaroo combines a large, set-associative cache with a small, log-structured cache. The set-associative cache requires minimal DRAM, while the log-structured cache minimizes Kangaroo’s flash writes. Experiments using traces from Facebook and Twitter show that Kangaroo achieves DRAM usage close to the best prior DRAM-optimized design, flash writes close to the best prior write-optimized design, and miss ratios better than both. Kangaroo’s design is Pareto-optimal across a range of allowed write rates, DRAM sizes, and flash sizes, reducing misses by 29% over the state of the art. These results are corroborated with a test deployment of Kangaroo in a production flash cache at Facebook.

Won Best Paper Award at SOSP 2021

Related Publications

All Publications

POPL - January 16, 2022

Concurrent Incorrectness Separation Logic

Azalea Raad, Josh Berdine, Derek Dreyer, Peter O'Hearn

HOTI - November 1, 2021

Scalable Distributed Training of Recommendation Models: An ASTRA-SIM + NS3 case-study with TCP/IP transport

Saeed Rashidi, Pallavi Shurpali, Srinivas Sridharan, Naader Hassani, Dheevatsa Mudigere, Krishnakumar Nair, Misha Smelyanskiy, Tushar Krishna

ICSE - November 17, 2021

Automatic Testing and Improvement of Machine Translation

Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, Lu Zhang

ACM OOPSLA - October 22, 2021

VESPA: Static Profiling for Binary Optimization

Angélica Aparecida Moreira, Guilherme Ottoni, Fernando Magno Quintão Pereira

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy