Publication

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web

European Conference on Computer Vision (ECCV)


Abstract

Following a navigation instruction such as ‘Walk down the stairs and stop at the brown sofa’ requires embodied AI agents to ground referenced scene elements referenced (e.g. ‘stairs’) to visual content in the environment (pixels corresponding to ‘stairs’). We ask the following question – can we leverage abundant ‘disembodied’ web-scraped vision-and-language corpora (e.g. Conceptual Captions) to learn the visual groundings that improve performance on a relatively data-starved embodied perception task (Vision-and-Language Navigation)? Specifically, we develop VLN-BERT, a visiolinguistic transformer-based model for scoring the compatibility between an instruction (‘…stop at the brown sofa’) and a trajectory of panoramic RGB images captured by the agent. We demonstrate that pretraining VLN-BERT on image-text pairs from the web before fine-tuning on embodied path-instruction data significantly improves performance on VLN – outperforming prior state-of-the-art in the fully-observed setting by 4 absolute percentage points on success rate. Ablations of our pretraining curriculum show each stage to be impactful – with their combination resulting in further gains.

Related Publications

All Publications

SIGDIAL - August 1, 2021

Annotation Inconsistency and Entity Bias in MultiWOZ

Kun Qian, Ahmad Berrami, Zhouhan Lin, Ankita De, Alborz Geramifard, Zhou Yu, Chinnadhurai Sankar

Uncertainty and Robustness in Deep Learning Workshop at ICML - August 1, 2020

Tilted Empirical Risk Minimization

Tian Li, Ahmad Beirami, Maziar Sanjabi, Virginia Smith

arxiv - November 1, 2020

The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Pratik Ringshia, Davide Testuggine

ICML - July 24, 2021

Using Bifurcations for Diversity in Differentiable Games

Jonathan Lorraine, Jack Parker-Holder, Paul Vicol, Aldo Pacchiano, Luke Metz, Tal Kachman, Jakob Foerster

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy