Improving Treatment Effect Estimators Through Experiment Splitting

The Web Conference (WWW)


We present a method for implementing shrinkage of treatment effect estimators, and hence improving their precision, via experiment splitting. Experiment splitting reduces shrinkage to a standard prediction problem. The method makes minimal distributional assumptions, and allows for the degree of shrinkage in one metric to depend on other metrics. Using a dataset of 226 Facebook News Feed A/B tests, we show that a lasso estimator based on repeated experiment splitting has a 44% lower mean squared predictive error than the conventional, unshrunk treatment effect estimator, a 18% lower mean squared predictive error than the James-Stein shrinkage estimator, and would lead to substantially improved launch decisions over both.

Related Publications

All Publications

NeurIPS - December 5, 2021

Local Differential Privacy for Regret Minimization in Reinforcement Learning

Evrard Garcelon, Vianney Perchet, Ciara Pike-Burke, Matteo Pirotta

NeurIPS - December 5, 2021

Hierarchical Skills for Efficient Exploration

Jonas Gehring, Gabriel Synnaeve, Andreas Krause, Nicolas Usunier

NeurIPS - December 5, 2021

Interpretable agent communication from scratch (with a generic visual processor emerging on the side)

Roberto Dessì, Eugene Kharitonov, Marco Baroni

Journal of Big Data - November 6, 2021

A graphical method of cumulative differences between two subpopulations

Mark Tygert

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy