Publication

How to Get Past Sesame Street: Sentence-Level Pretraining Beyond Language Modeling

Association for Computational Linguistics (ACL)


Abstract

Natural language understanding has recently seen a surge of progress with the use of sentence encoders like ELMo (Peters et al., 2018a) and BERT (Devlin et al., 2019) which are pretrained on variants of language modeling. We conduct the first large-scale systematic study of candidate pretraining tasks, comparing 19 different tasks both as alternatives and complements to language modeling. Our primary results support the use language modeling, especially when combined with pretraining on additional labeled-data tasks. However, our results are mixed across pretraining tasks and show some concerning trends: In ELMo’s pretrain-then-freeze paradigm, random baselines are worryingly strong and results vary strikingly across target tasks. In addition, fine-tuning BERT on an intermediate task often negatively impacts downstream transfer. We also see modest gains from multitask training, suggesting the development of more sophisticated multitask and transfer learning techniques as an avenue for further research.

Related Publications

All Publications

Interspeech - August 31, 2021

slimIPL: Language-Model-Free Iterative Pseudo-Labeling

Tatiana Likhomanenko, Qiantong Xu, Jacob Kahn, Gabriel Synnaeve, Ronan Collobert

Interspeech - August 30, 2021

A Two-stage Approach to Speech Bandwidth Extension

Ju Lin, Yun Wang, Kaustubh Kalgaonkar, Gil Keren, Didi Zhang, Christian Fuegen

SIGDIAL - July 29, 2021

Getting to Production with Few-shot Natural Language Generation Models

Peyman Heidari, Arash Einolghozati, Shashank Jain, Soumya Batra, Lee Callender, Ankit Arun, Shawn Mei, Sonal Gupta, Pinar Donmez, Vikas Bhardwaj, Anuj Kumar, Michael White

ACL - August 2, 2021

Text-Free Image-to-Speech Synthesis Using Learned Segmental Units

Wei-Ning Hsu, David Harwath, Tyler Miller, Christopher Song, James Glass

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy