Publication

Holographic Optics for Thin and Lightweight Virtual Reality

ACM SIGGRAPH


Abstract

We present a class of display designs combining holographic optics, directional backlighting, laser illumination, and polarization-based optical folding to achieve thin, lightweight, and high performance near-eye displays for virtual reality. Several design alternatives are proposed, compared, and experimentally validated as prototypes. Using only thin, flat films as optical components, we demonstrate VR displays with thicknesses of less than 9 mm, fields of view of over 90◦ horizontally, and form factors approaching sunglasses. In a benchtop form factor, we also demonstrate a full color display using wavelength-multiplexed holographic lenses that uses laser illumination to provide a large gamut and highly saturated color. We show experimentally that our designs support resolutions expected of modern VR headsets and can scale to human visual acuity limits. Current limitations are identified, and we discuss challenges to obtain full practicality.

Related Publications

All Publications

ASPE - October 8, 2021

Single-Point Diamond Turning of Features with Large Azimuthal Slope

Alex Sohn, Neil Naples

I3DA - September 8, 2021

Binaural Reproduction From Microphone Array Signals Incorporating Head-Tracking

Lior Madmoni, Jacob Donley, Vladimir Tourbabin, Boaz Rafaely

SID - September 25, 2020

Vergence-Accommodation Conflicts in Augmented Reality: Impacts on Perceived Image Quality

Ian M. Erkelens, Kevin Mackenzie

IROS - September 29, 2021

Constant Fluidic Mass Control for Soft Actuators Using Artificial Neural Network Algorithm

Heng Xu, Priyanshu Agarwal, Benjamin Stephens-Fripp

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy