HHVM Jump-Start: Boosting Both Warmup and Steady-State Performance at Scale

International Symposium on Code Generation and Optimization (CGO)


Just-In-Time (JIT) compilation is often employed in Virtual Machines (VMs) to translate their virtual-machine languages into real-machine code. This approach not only brings portability, but it also enables aggressive compiler optimizations based on runtime behavior observed via profiling. The downside of JIT compilation, compared to Ahead-Of-Time native compilation, is that the profiling and compilation overheads are incurred during execution. To mitigate these overheads, previous work have proposed sharing either profile data or final JIT compiled code across VM executions. Unfortunately, these techniques have drawbacks, including steady-state performance degradation and difficulty of use. To address these issues, this paper presents the Jump-Start mechanism implemented inside the HipHop Virtual Machine (HHVM). Jump-Start is a practical approach to share VM profile data at a large scale, being used to power one of the largest websites in the world. In this paper, we argue for HHVM’s Jump-Start approach, describe it in detail, and present steady-state optimizations built on top of it. Running the Facebook website, we demonstrate that Jump-Start effectively solves the warmup problem in HHVM, reducing the server capacity loss during warmup by 54.9%, while also improving steady-state performance by 5.4%.

Related Publications

All Publications

arXiv - July 8, 2021

First-Generation Inference Accelerator Deployment at Facebook

Michael Anderson, Benny Chen, Stephen Chen, Summer Deng, Jordan Fix, Michael Gschwind, Aravind Kalaiah, Changkyu Kim, Jaewon Lee, Jason Liang, Haixin Liu, Yinghai Lu, Jack Montgomery, Arun Moorthy, Satish Nadathur, Sam Naghshineh, Avinash Nayak, Jongsoo Park, Chris Petersen, Martin Schatz, Narayanan Sundaram, Bangsheng Tang, Peter Tang, Amy Yang, Jiecao Yu, Hector Yuen, Ying Zhang, Aravind Anbudurai, Vandana Balan, Harsha Bojja, Joe Boyd, Matthew Breitbach, Claudio Caldato, Anna Calvo, Garret Catron, Sneh Chandwani, Panos Christeas, Brad Cottel, Brian Coutinho, Arun Dalli, Abhishek Dhanotia, Oniel Duncan, Roman Dzhabarov, Simon Elmir, Chunli Fu, Wenyin Fu, Michael Fulthorp, Adi Gangidi, Nick Gibson, Sean Gordon, Beatriz Padilla Hernandez, Daniel Ho, Yu-Cheng Huang, Olof Johansson, Shishir Juluri, Shobhit Kanaujia, Manali Kesarkar, Jonathan Killinger, Ben Kim, Rohan Kulkarni, Meghan Lele, Huayu Li, Huamin Li, Yueming Li, Cynthia Liu, Jerry Liu, Bert Maher, Chandra Mallipedi, Seema Mangla, Kiran Kumar Matam, Jubin Mehta, Shobhit Mehta, Christopher Mitchell, Bharath Muthiah, Nitin Nagarkatte, Ashwin Narasimha, Bernard Nguyen, Thiara Ortiz, Soumya Padmanabha, Deng Pan, Ashwin Poojary, Ye (Charlotte) Qi, Olivier Raginel, Dwarak Rajagopal, Tristan Rice, Craig Ross, Nadav Rotem, Scott Russ, Kushal Shah, Baohua Shan, Hao Shen, Pavan Shetty, Krish Skandakumaran, Kutta Srinivasan, Roshan Sumbaly, Michael Tauberg, Mor Tzur, Hao Wang, Man Wang, Ben Wei, Alex Xiao, Chenyu Xu, Martin Yang, Kai Zhang, Ruoxi Zhang, Ming Zhao, Whitney Zhao, Rui Zhu, Lin Qiao, Misha Smelyanskiy, Bill Jia, Vijay Rao

IEEE Access Journal (IEEE Access) - August 1, 2021

Coded Machine Unlearning

Nasser Aldaghri, Hessam Mahdavifar, Ahmad Beirami

FAST - February 23, 2021

Evolution of Development Priorities in Key-value Stores Serving Large-scale Applications: The RocksDB Experience

Siying Dong, Andrew Kryczka, Yanqin Jin, Michael Stumm

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy