Gradient Descent Learns One-hidden-layer CNN: Don’t be Afraid of Spurious Local Minima

International Conference on Machine Learning (ICML)


We consider the problem of learning a one-hidden-layer neural network with non-overlapping convolutional layer and ReLU activation function, i.e., f(Z; w, a) = Σj ajσ(wT Zj), in which both the convolutional weights w and the output weights a are parameters to be learned. We prove that with Gaussian input Z, there is a spurious local minimum that is not a global minimum. Surprisingly, in the presence of local minimum, starting from randomly initialized weights, gradient descent with weight normalization can still be proven to recover the true parameters with constant probability (which can be boosted to arbitrarily high accuracy with multiple restarts). We also show that with constant probability, the same procedure could also converge to the spurious local minimum, showing that the local minimum plays a non-trivial role in the dynamics of gradient descent. Furthermore, a quantitative analysis shows that the gradient descent dynamics has two phases: it starts off slow, but converges much faster after several iterations.

Related Publications

All Publications

LEEP: A New Measure to Evaluate Transferability of Learned Representations

Cuong V. Nguyen, Tal Hassner, Matthias Seeger, Cedric Archambeau

ICML - July 13, 2020

The Differentiable Cross-Entropy Method

Brandon Amos, Denis Yarats

ICML - July 12, 2020

Growing Action Spaces

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

July 14, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy