Publication

Gender, Topic, and Audience Response: An Analysis of User-Generated Content on Facebook

ACM Conference on Human Factors in Computing Systems (CHI)


Abstract

Although users generate a large volume of text on Facebook every day, we know little about the topics they choose to talk about, and how their network responds. Using Latent Dirichlet Allocation (LDA), we identify topics from more than half a million Facebook status updates and determine which topics are more likely to receive audience feedback, such as likes and comments.

Furthermore, as previous research suggests that men and women use language for different purposes, we examine gender differences in topics, finding that women tend to share more personal issues (e.g., family matters) and men discuss more general public events (e.g., politics and sports). Post topic predicts how many people will respond to it, and gender moderates the relationship between topic and audience responsiveness.

Related Publications

All Publications

Open Source Evolutionary Structured Optimization

Jeremy Rapin, Pauline Bennet, Emmanuel Centeno, Daniel Haziza, Antoine Moreau, Olivier Teytaud

Evolutionary Computation Software Systems Workshop at ​GECCO - July 9, 2020

Adherence to suicide reporting guidelines by news shared on a social networking platform

Steven A. Sumner, Moira Burke, Farshad Kooti

PNAS - July 6, 2020

A Counterfactual Framework for Seller-Side A/B Testing on Marketplaces

Viet Ha-Thuc, Avishek Dutta, Ren Mao, Matthew Wood, Yunli Liu

ACM SIGIR - July 25, 2020

Finding the Best k in Core Decomposition: A Time and Space Optimal Solution

Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang, Yinglong Xia, Chenyi Zhang

ICDE - April 20, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy