Publication

From Satellite Imagery to Disaster Insights

AI for Social Good Workshop at NeurIPS 2018


Abstract

The use of satellite imagery has become increasingly popular for disaster monitoring and response. After a disaster, it is important to prioritize rescue operations, disaster response and coordinate relief efforts. These have to be carried out in a fast and efficient manner since resources are often limited in disaster affected areas and it’s extremely important to identify the areas of maximum damage. However, most of the existing disaster mapping efforts are manual which is time-consuming and often leads to erroneous results. In order to address these issues, we propose a framework for change detection using Convolutional Neural Networks (CNN) on satellite images which can then be thresholded and clustered together into grids to find areas which have been most severely affected by a disaster. We also present a novel metric called Disaster Impact Index (DII) and use it to quantify the impact of two natural disasters – the Hurricane Harvey flood and the Santa Rosa fire. Our framework achieves a top F1 score of 81.2% on the gridded flood dataset and 83.5% on the gridded fire dataset.

This is a collaboration between Saikat Basu and Guan Pang (Facebook) and Jigar Doshi (CrowdAI).
Read more about this research here.

Related Publications

All Publications

COLING - December 8, 2020

Best Practices for Data-Efficient Modeling in NLG: How to Train Production-Ready Neural Models with Less Data

Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini Challa, Pinar Donmez, Peyman Heidari, Hakan Inan, Shashank Jain, Anuj Kumar, Shawn Mei, Karthik Mohan, Michael White

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

NeurIPS - November 25, 2020

Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian

Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer, Alistair Letcher, Alex Peysakhovich, Aldo Pacchiano, Jakob Foerster

NeurIPS - December 7, 2020

Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees

Shali Jiang, Daniel Jiang, Max Balandat, Brian Karrer, Jacob R. Gardner, Roman Garnett

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy