Publication

FroDO: From Detections to 3D Objects

Conference on Computer Vision and Pattern Recognition (CVPR)


Abstract

Object-oriented maps are important for scene understanding since they jointly capture geometry and semantics, allow individual instantiation and meaningful reasoning about objects. We introduce FroDO, a method for accurate 3D reconstruction of object instances from RGB video that infers object location, pose and shape in a coarse-to-fine manner. Key to FroDO is to embed object shapes in a novel learnt space that allows seamless switching between sparse point cloud and dense DeepSDF decoding. Given an input sequence of localized RGB frames, FroDO first aggregates 2D detections to instantiate a category-aware 3D bounding box per object. A shape code is regressed using an encoder network before optimizing shape and pose further under the learnt shape priors using sparse and dense shape representations. The optimization uses multi-view geometric, photometric and silhouette losses. We evaluate on real-world datasets, including Pix3D, Redwood-OS, and ScanNet, for single-view, multi-view, and multi-object reconstruction.

 

Related Publications

All Publications

LEEP: A New Measure to Evaluate Transferability of Learned Representations

Cuong V. Nguyen, Tal Hassner, Matthias Seeger, Cedric Archambeau

ICML - July 13, 2020

The Differentiable Cross-Entropy Method

Brandon Amos, Denis Yarats

ICML - July 12, 2020

Growing Action Spaces

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

July 14, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy