Fixing the train-test resolution discrepancy

Neural Information Processing Systems (NeurIPS)

By: Hugo Touvron, Andrea Vedaldi, Matthijs Douze, Hervé Jégou

Abstract

Data-augmentation is key to the training of neural networks for image classification. This paper first shows that existing augmentations induce a significant discrepancy between the size of the objects seen by the classifier at train and test time: in fact, a lower train resolution improves the classification at test time!

We then propose a simple strategy to optimize the classifier performance, that employs different train and test resolutions. It relies on a computationally cheap fine-tuning of the network at the test resolution. This enables training strong classifiers using small training images, and therefore significantly reduce the training time. For instance, we obtain 77.1% top-1 accuracy on ImageNet with a ResNet50 trained on 128×128 images, and 79.8% with one trained at 224×224.

A ResNeXt-101 32x48d pre-trained with weak supervision on 940 million 224×224 images and further optimized with our technique for test resolution 320×320 achieves 86.4% top-1 accuracy (top-5: 98.0%). To the best of our knowledge this is the highest ImageNet single-crop accuracy to date.