First-order Adversarial Vulnerability of Neural Networks and Input Dimension

International Conference on Machine Learning (ICML)


Over the past few years, neural networks were proven vulnerable to adversarial images: targeted but imperceptible image perturbations lead to drastically different predictions. We show that adversarial vulnerability increases with the gradients of the training objective when viewed as a function of the inputs. Surprisingly, vulnerability does not depend on network topology: for many standard network architectures, we prove that at initialization, the l1-norm of these gradients grows as the square root of the input dimension, leaving the networks increasingly vulnerable with growing image size. We empirically show that this dimension dependence persists after either usual or robust training, but gets attenuated with higher regularization.

Related Publications

All Publications

Audio-Visual Waypoints for Navigation

Changan Chen, Sagnik Majumder, Ziad Al-Halah, Ruohan Gao, Santhosh K. Ramakrishnan, Kristen Grauman

arXiv - August 21, 2020

Robust Market Equilibria with Uncertain Preferences

Riley Murray, Christian Kroer, Alex Peysakhovich, Parikshit Shah

AAAI - February 12, 2020

Weak-Attention Suppression For Transformer Based Speech Recognition

Yangyang Shi, Yongqiang Wang, Chunyang Wu, Christian Fuegen, Frank Zhang, Duc Le, Ching-Feng Yeh, Michael L. Seltzer

Interspeech - October 26, 2020

Machine Learning in Compilers: Past, Present, and Future

Hugh Leather, Chris Cummins

FDL - September 14, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy