Publication

First-order Adversarial Vulnerability of Neural Networks and Input Dimension

International Conference on Machine Learning (ICML)


Abstract

Over the past few years, neural networks were proven vulnerable to adversarial images: targeted but imperceptible image perturbations lead to drastically different predictions. We show that adversarial vulnerability increases with the gradients of the training objective when viewed as a function of the inputs. Surprisingly, vulnerability does not depend on network topology: for many standard network architectures, we prove that at initialization, the l1-norm of these gradients grows as the square root of the input dimension, leaving the networks increasingly vulnerable with growing image size. We empirically show that this dimension dependence persists after either usual or robust training, but gets attenuated with higher regularization.

Related Publications

All Publications

EMNLP - October 31, 2021

Evaluation Paradigms in Question Answering

Pedro Rodriguez, Jordan Boyd-Graber

ASRU - December 13, 2021

Incorporating Real-world Noisy Speech in Neural-network-based Speech Enhancement Systems

Yangyang Xia, Buye Xu, Anurag Kumar

IROS - September 1, 2021

Success Weighted by Completion Time: A Dynamics-Aware Evaluation Criteria for Embodied Navigation

Naoki Yokoyama, Sehoon Ha, Dhruv Batra

EMNLP - November 16, 2020

Abusive Language Detection using Syntactic Dependency Graphs

Kanika Narang, Chris Brew

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy