Publication

Federated Learning with Buffered Asynchronous Aggregation

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML


Abstract

Federated Learning (FL) trains a shared model across distributed devices while keeping the training data on the devices. Most FL schemes are synchronous: they perform a synchronized aggregation of model updates from individual devices. Synchronous training can be slow because of late-arriving devices (stragglers). On the other hand, completely asynchronous training makes FL less private because of incompatibility with secure aggregation. In this work, we propose a model aggregation scheme, FedBuff, that combines the best properties of synchronous and asynchronous FL. Similar to synchronous FL, FedBuff is compatible with secure aggregation. Similar to asynchronous FL, FedBuff is robust to stragglers. In FedBuff, clients trains asynchronously and send updates to the server. The server aggregates client updates in a private buffer until K updates have been received, at which point a server model update is immediately performed. We provide theoretical convergence guarantees for FedBuff in a non-convex setting. Empirically, FedBuff converges up to 3.8× faster than previous proposals for synchronous FL (e.g., FedAvgM), and up to 2.5× faster than previous proposals for asynchronous FL (e.g., FedAsync). We show that FedBuff is robust to different staleness distributions and is more scalable than synchronous FL techniques.

Related Publications

All Publications

Interspeech - October 12, 2021

LiRA: Learning Visual Speech Representations from Audio through Self-supervision

Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, Maja Pantic

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

ISAAC - December 5, 2021

On the Extended TSP Problem

Julián Mestre, Sergey Pupyrev, Seeun William Umboh

IEEE Transactions on Image Processing Journal - March 9, 2021

Inspirational Adversarial Image Generation

Baptiste Rozière, Morgane Rivière, Olivier Teytaud, Jérémy Rapin, Yann LeCun, Camille Couprie

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy