Fast Diffraction Pathfinding for Dynamic Sound Propagation



In the context of geometric acoustic simulation, one of the more perceptually important yet difficult to simulate acoustic effects is diffraction, a phenomenon that allows sound to propagate around obstructions and corners. A significant bottleneck in real-time simulation of diffraction is the enumeration of high-order diffraction propagation paths in scenes with complex geometry (e.g. highly tessellated surfaces). To this end, we present a dynamic geometric diffraction approach that consists of an extensive mesh preprocessing pipeline and complementary runtime algorithm. The preprocessing module identifies a small subset of edges that are important for diffraction using a novel silhouette edge detection heuristic. It also extends these edges with planar diffraction geometry and precomputes a graph data structure encoding the visibility between the edges. The runtime module uses bidirectional path tracing against the diffraction geometry to probabilistically explore potential paths between sources and listeners, then evaluates the intensities for these paths using the Uniform Theory of Diffraction. It uses the edge visibility graph and the A* pathfinding algorithm to robustly and efficiently find additional high-order diffraction paths. We demonstrate how this technique can simulate 10th-order diffraction up to 568 times faster than the previous state of the art, and can efficiently handle large scenes with both high geometric complexity and high numbers of sources.


Demo Video 


Related Publications

All Publications

3DV - November 18, 2021

Recovering Real-World Reflectance Properties and Shading From HDR Imagery

Bjoern Haefner, Simon Green, Alan Oursland, Daniel Andersen, Michael Goesele, Daniel Cremers, Richard Newcombe, Thomas Whelan

ICCV - October 11, 2021

ARCH++: Animation-Ready Clothed Human Reconstruction Revisited

Tong He, Yuanlu Xu, Shunsuke Saito, Stefano Soatto, Tony Tung

ICASSP - June 10, 2021

The Far-Field Equatorial Array for Binaural Rendering

Jens Ahrens, Hannes Helmholz, David Lou Alon, Sebastià V. Amengual Garí

ICCV - October 4, 2021

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes

Kai-En Lin, Lei Xiao, Feng Liu, Guowei Yang, Ravi Ramamoorthi

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy