Publication

Fashion++: Minimal Edits for Outfit Improvement

International Conference on Computer Vision (ICCV)


Abstract

Given an outfit, what small changes would most improve its fashionability? This question presents an intriguing new vision challenge. We introduce Fashion++, an approach that proposes minimal adjustments to a full-body clothing outfit that will have maximal impact on its fashionability. Our model consists of a deep image generation neural network that learns to synthesize clothing conditioned on learned per-garment encodings. The latent encodings are explicitly factorized according to shape and texture, thereby allowing direct edits for both fit/presentation and color/patterns/material, respectively. We show how to bootstrap Web photos to automatically train a fashionability model, and develop an activation maximization-style approach to transform the input image into its more fashionable self. The edits suggested range from swapping in a new garment to tweaking its color, how it is worn (e.g., rolling up sleeves), or its fit (e.g., making pants baggier). Experiments demonstrate that Fashion++ provides successful edits, both according to automated metrics and human opinion.

Related Publications

All Publications

EACL - April 18, 2021

Co-evolution of language and agents in referential games

Gautier Dagan, Dieuwke Hupkes, Elia Bruni

PPSN - September 2, 2020

Variance Reduction for Better Sampling in Continuous Domains

Laurent Meunier, Carola Doerr, Jeremy Rapin, Olivier Teytaud

Proceedings of the IEEE - November 1, 2020

Advances in Asynchronous Parallel and Distributed Optimization

Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, Michael G. Rabbat

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy