Publication

Eye In-Painting with Exemplar Generative Adversarial Networks

Computer Vision and Pattern Recognition (CVPR)


Abstract

This paper introduces a novel approach to in-painting where the identity of the object to remove or change is preserved and accounted for at inference time: Exemplar GANs (ExGANs). ExGANs are a type of conditional GAN that utilize exemplar information to produce high-quality, personalized in-painting results. We propose using exemplar information in the form of a reference image of the region to in-paint, or a perceptual code describing that object. Unlike previous conditional GAN formulations, this extra information can be inserted at multiple points within the adversarial network, thus increasing its descriptive power. We show that ExGANs can produce photo-realistic personalized in-painting results that are both perceptually and semantically plausible by applying them to the task of closed-to-open eye in-painting in natural pictures. A new benchmark dataset is also introduced for the task of eye in-painting for future comparisons.

Related Publications

All Publications

EMNLP - October 1, 2021

Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, Douwe Kiela

IROS - September 30, 2021

Learning Navigation Skills for Legged Robots with Learned Robot Embeddings

Joanne Truong, Denis Yarats, Tianyu Li, Franziska Meier, Sonia Chernova, Dhruv Batra, Akshara Rai

IROS - September 27, 2021

Joint Sampling and Trajectory Optimization over Graphs for Online Motion Planning

Kalyan Vasudev Alwala, Mustafa Mukadam

RecSys - September 27, 2021

Transformers4Rec: Bridging the Gap between NLP and Sequential / Session-Based Recommendation

Gabriel De Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, Even Oldridge

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy