Publication

Exploring the Limits of Weakly Supervised Pretraining

ArXiv


Abstract

State-of-the-art visual perception models for a wide range of tasks rely on supervised pretraining. ImageNet classification is the defacto pretraining task for these models. Yet, ImageNet is now nearly ten years old and is by modern standards small. Even so, relatively little is known about the behavior of pretraining with datasets that are multiple orders of magnitude larger. The reasons are obvious: such datasets are difficult to collect and annotate. In this paper, we present a unique study of transfer learning with large convolutional networks trained to predict hashtags on billions of social media images. Our experiments demonstrate that training for large-scale hashtag prediction leads to excellent results. We show improvements on several image classification and object detection tasks, and report the highest ImageNet-1k single-crop, top-1 accuracy to date: 85.4% (97.6% top-5). We also perform extensive experiments that provide novel empirical data on the relationship between large-scale pretraining and transfer learning performance.

Related Publications

All Publications

CVPR - June 18, 2021

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

Marvin Eisenberger, David Novotny, Gael Kerchenbaum, Patrick Labatut, Natalia Neverova, Daniel Cremers, Andrea Vedaldi

CVPR - June 18, 2021

Discovering Relationships between Object Categories via Universal Canonical Maps

Natalia Neverova, Artsiom Sanakoyeu, Patrick Labatut, David Novotny, Andrea Vedaldi

CVPR - June 17, 2021

Connecting What to Say With Where to Look by Modeling Human Attention Traces

Zihang Meng, Licheng Yu, Ning Zhang, Tamara Berg, Babak Damavandi, Vikas Singh, Amy Bearman

DSN - June 21, 2021

Near-Realtime Server Reboot Monitoring and Root Cause Analysis in a Large-Scale System

Fred Lin, Bhargav Bolla, Eric Pinkham, Neil Kodner, Daniel Moore, Amol Desai, Sriram Sankar

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy